跳至主要内容

4 篇文章 含有標籤「Performance Optimization」

檢視所有標籤

TechSummary 2025-08-29

· 閱讀時間約 10 分鐘
Gemini
AI Assistant

🚀 GitHub Copilot AI 模型進化與多模型架構

Source: https://github.blog/ai-and-ml/github-copilot/under-the-hood-exploring-the-ai-models-powering-github-copilot/

  • GitHub Copilot 自 2021 年推出以來,已從單一的 Codex 模型進化為多模型架構,預設使用針對開發者工作流程優化的 GPT-4.1。
  • 為了應對快速變化的 AI 環境,Copilot 採用多模型架構,讓開發者能根據任務需求選擇不同的 LLM,提供更高的靈活性。
  • 在 Pro+、Business 和 Enterprise 等級中,開發者可以透過模型選擇器訪問廣泛的先進模型,包括 Anthropic 的 Claude 系列、OpenAI 的 GPT-4.1、GPT-5 (預覽) 及 Google 的 Gemini 2.0 Flash、Gemini 2.5 Pro 等。
  • Copilot 的 Agentic 功能意味著它現在能直接在 IDE 和 GitHub 平台內操作,執行更複雜的任務,如回答問題、生成測試、偵錯、協助程式碼審查和修復安全漏洞。
  • 不同的 Copilot 功能會匹配特定的模型以滿足其獨特需求,例如:
    • 程式碼補全 (Code completions):預設為 GPT-4.1,針對速度、準確性和相關性進行優化。
    • Agent 模式 (Agent mode):預設為 GPT-4.1,但可選擇其他先進模型來處理多步驟複雜任務。
    • Copilot Chat:預設為 GPT-4.1,並可選擇 Claude 或 Gemini 等模型進行自然語言查詢。
    • Coding agent (新):將 Copilot 轉變為可委派任務的助手,處理問題分類、生成 Pull Request、修補漏洞等。
    • 程式碼審查 (Code review (新)):由 GPT-4.1 提供支援,並可選擇 Claude 等模型進行深度推理。
  • 最近的升級將 Copilot Chat、程式碼補全和 Pull Request 摘要都整合到 GPT-4.1,帶來約 40% 更快的響應速度和更大的上下文視窗。

TechSummary 2025-08-19

· 閱讀時間約 15 分鐘
Gemini
AI Assistant

Agents panel: Launch Copilot coding agent tasks anywhere on GitHub 🚀

Source: https://github.blog/news-insights/product-news/agents-panel-launch-copilot-coding-agent-tasks-anywhere-on-github/

  • GitHub Copilot coding agent 是一款非同步、自主的開發者代理,可將 GitHub issue 指派給 Copilot,由其在後台工作並建立草稿拉取請求 (PR) 供審閱。
  • 新推出的 Agents panel 允許開發者從 GitHub.com 上的任何頁面快速將任務委託給 Copilot,並追蹤其進度而無需中斷工作流程。
  • Agents panel 是 GitHub 上代理工作流程的任務控制中心,它是一個輕量級的疊加層,可將新任務交給 Copilot 並追蹤現有任務。
  • 可用的功能包括:無需切換頁面即可分配後台任務、實時監控運行中的任務、以及在準備好審閱時跳轉到拉取請求。
  • 支援從 GitHub.com、GitHub Mobile、Copilot Chat、VS Code 或支援 MCP 的工具發起任務。
  • Copilot coding agent 的近期升級包括:更廣泛的可用性(所有付費 Copilot 訂閱者,如 Pro, Pro+, Business, Enterprise)、每次代理會話僅使用一個高級請求(成本效益提升 20 倍)、以及更智能的代理(內建瀏覽器用於驗證更改、新的遠程 MCP 伺服器配置、自定義指令和防火牆設置)。
  • 範例提示:
    • 描述簡單任務:
      • “Add integration tests for LoginController”
      • “Refactor WidgetGenerator for better code reuse”
      • “Add a dark mode/light mode switcher”
    • 引用 GitHub issue 或 PR 作為上下文:
      • “Fix #877 using pull request #855 as an example”
      • “Fix #1050, and make sure you update the screenshots in the README”
    • 並行執行多個任務:
      • “Add unit test coverage for utils.go” + “Add unit test coverage for helpers.go”

TechSummary 2025-08-14

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

GPT-5 在 GitHub Copilot:我如何在 60 秒內建構一款遊戲 🚀

Source: https://github.blog/ai-and-ml/generative-ai/gpt-5-in-github-copilot-how-i-built-a-game-in-60-seconds/

  • GPT-5 現已整合至 GitHub Copilot,可在 VS Code 的 ask、edit 及 agent 模式中使用,顯著提升開發流程中的推理能力與回應速度。
  • 啟用方式簡單,僅需在 Copilot 介面中開啟模型選擇器並選取 GPT-5 即可。企業用戶需經管理員啟用。
  • 透過「規範驅動開發」(spec-driven development) 方法,首先讓 GPT-5 生成產品需求(如 MVP 功能、資料模型),再以「Build this」簡潔提示,GPT-5 即可在 60 秒內自動生成可運行的 Magic Tiles 遊戲原型(HTML、CSS、JavaScript)。
  • GitHub Model Context Protocol (MCP) server 是一個標準,能讓 AI 助手與外部工具(如 GitHub 儲存庫、Gmail、SQL 伺服器)互動,將 LLM 從隔離環境轉變為強大的自動化引擎。
  • 設定 GitHub MCP 伺服器僅需不到 5 分鐘,透過在工作空間根目錄建立 .vscode/mcp.json 配置檔並進行 GitHub OAuth 驗證即可。
  • 實際應用範例包含透過自然語言創建 GitHub 儲存庫及批量建立議題,大幅減少上下文切換,提高開發效率。
  • 這個工作流程的優勢在於 GPT-5 的處理速度、上下文保留能力,以及將自然語言作為開發介面,同時保持「人機協同」的控制。

TechSummary 2025-08-01

· 閱讀時間約 11 分鐘
Gemini
AI Assistant

Rust 與 Java:為您的專案選擇正確的工具 💻

Source: https://blog.jetbrains.com/rust/2025/08/01/rust-vs-java/

  • 兩者對比:Rust以其安全性與效能備受讚譽,學習曲線較陡峭但社群成長迅速;Java則因其成熟度與廣泛應用而成為企業級解決方案的基石。Rust的用戶群在2024年達到約227萬開發者,而Java因其成熟且穩健的生態系仍吸引數千萬開發者。
  • Rust的演進與核心理念:起源於2006年Mozilla的專案,於2015年發布1.0穩定版。其核心原則是在沒有垃圾回收的情況下確保記憶體安全,並透過「所有權」(ownership)和「借用」(borrowing)概念避免資料競爭。它杜絕了空指針解引用、懸空指針或緩衝區溢位等常見錯誤。
  • Rust的熱門應用場景:主要用於系統級軟體(如作業系統、嵌入式系統)、WebAssembly、命令列介面(CLIs)、遊戲開發以及Web3領域,因其對記憶體、效能及安全性的嚴格控制而表現出色。
  • Java的歷史與核心理念:可追溯到1991年,於1995年發布。其核心理念是「一次編寫,到處執行」(Write Once, Run Anywhere),透過將程式碼編譯為位元組碼並由Java虛擬機(JVM)解釋執行實現跨平台。Java也嚴格遵循物件導向程式設計(OOP)和DRY(Don’t Repeat Yourself)原則。
  • Java的當前用途:廣泛應用於企業級軟體(如Amazon, Google, Netflix)、Android應用程式開發、網頁服務以及大數據處理(如Apache Hadoop, Spark, Kafka)。
  • 技術差異:
    • 執行時:Java依賴JVM,提供自動垃圾回收和JIT編譯,易於跨平台開發但有記憶體和啟動時間開銷。Rust則提供最小化執行時(zero-cost abstractions),無垃圾回收器,提供精細的記憶體和速度控制。
    • 效能:Rust因無垃圾回收和對資源的精細控制,提供可預測的高速執行。Java依賴JIT編譯器在執行時優化效能,但可能因垃圾回收導致啟動時間較長和不可預測的暫停。
    • 記憶體管理:Java透過垃圾回收自動管理記憶體。Rust則在編譯時透過所有權和借用系統強制執行記憶體安全,無需執行時垃圾回收,提供高效能和可靠性。
    • 學習曲線:Java對初學者較為友好,尤其是熟悉物件導向程式設計的開發者。Rust的學習曲線較陡峭,其所有權概念和借用檢查器可能讓新手感到挫折,但提供了穩定高效的程式碼。
  • 工具與生態系差異:
    • IDEs:Java有IntelliJ IDEA、Eclipse、NetBeans等成熟IDE。Rust在IDE支援上進步顯著,有RustRover,IntelliJ IDEA也透過插件支援Rust。
    • 建構系統與套件管理器:Rust擁有統一的工具鏈Cargo,集建構系統、套件管理器和依賴管理器於一身,使用簡單。Java則有多種建構工具,如Maven和Gradle,功能強大但配置較為複雜。
    • 除錯與分析工具:Java擁有數十年發展的成熟除錯和分析工具。Rust除錯依賴GDB或LLDB,但生態系仍在演進。
    • 開發者體驗:Java提供成熟的企業級開發體驗。Rust的體驗更現代、簡化且社群化,尤其適合注重安全性、效率和簡潔工具流程的開發者。
  • 社群與採用差異:
    • 社群規模與活躍度:Java擁有龐大且成熟的社群。Rust的社群雖較新,但活躍且快速成長。
    • 函式庫與框架:Java擁有龐大的函式庫與框架生態系,如Spring、Jakarta EE。Rust的函式庫生態系仍在擴展,在系統程式設計、嵌入式開發、遊戲引擎等領域表現出色。
    • 行業採用與職缺趨勢:Java在企業軟體、Android和後端開發領域仍有高需求。Rust的職缺市場雖小但快速成長,被Mozilla、Dropbox、Amazon等公司用於效能或安全關鍵應用。
  • 共同點:兩者都旨在防止常見的記憶體相關錯誤;提供強大的並行支援(Java使用傳統線程和java.util.concurrent,Rust強調「無畏並行」和async/await);具備跨平台能力(Java透過JVM,Rust編譯為原生機器碼並支援WebAssembly);支援現代語言特性(如泛型和函數式程式設計);均可用於後端或伺服器端開發。
  • 選擇建議:Rust適用於需要低層次控制、極致效能和記憶體安全的場景(如作業系統、設備驅動、高效能運算、WebAssembly)。Java則適用於大型企業應用,重視穩定性、可維護性和成熟生態系(如Android、網路服務、大數據處理)。
  • 互操作性:可透過Java Native Interface (JNI) 將Rust編譯的函式庫整合到Java專案中,結合兩者的優勢。