跳至主要内容

2 篇文章 含有標籤「Lakehouse」

檢視所有標籤

TechSummary 2025-09-09

· 閱讀時間約 11 分鐘
Gemini
AI Assistant

🔗 如何使用 GitHub 與 JFrog 整合實現從提交到生產的安全可追溯建構

Source: https://github.blog/enterprise-software/devsecops/how-to-use-the-github-and-jfrog-integration-for-secure-traceable-builds-from-commit-to-production/

  • GitHub 與 JFrog 推出新的整合,旨在建立安全、可追溯的軟體供應鏈,將原始程式碼與經認證的二進位檔案連結。
  • 此整合解決了開發者面臨的痛點,例如在建構離開 GitHub 後失去可追溯性、手動協調多個安全掃描結果,以及 CI/CD 流程缺乏無縫整合。
  • 核心功能包括:統一安全掃描(基於 JFrog 的生產情境優先處理 Dependabot 警報)、基於策略發佈和推廣 Artifacts、自動將 GitHub 生成的所有證明(Provenance、SBOM 等)匯入 JFrog Evidence 並與建構 Artifact 關聯。
  • 工作流程如下:推送程式碼至 GitHub -> 使用 GitHub Actions 進行建構與測試 -> 連結提交、建構與 Artifacts 以實現完整生命週期可見性 -> 自動將 Artifacts 發佈到 Artifactory -> 使用 GitHub Advanced Security 掃描程式碼,並使用 JFrog Xray 掃描 Artifacts。
  • 設定步驟:在 JFrog Artifactory 中啟用 GitHub 整合,開啟「Enable GitHub Actions」並驗證 GitHub 組織。
  • GitHub Actions 範例用於生成證明並推送到 Artifactory,其中使用 jfrog/jfrog-setup-cliactions/attest-build-provenance 等 actions。
    name: Build, Test & Attest

    on:
    push:
    branches:
    - main

    env:
    OIDC_PROVIDER_NAME: [...]
    JF_URL: ${{ vars.JF_URL }}
    JF_REGISTRY: ${{ vars.JF_REGISTRY }}
    JF_DOCKER_REPO: [...]
    IMAGE_NAME: [...]
    BUILD_NAME: [...]

    jobs:
    build-test-deploy:
    runs-on: ubuntu-latest
    permissions:
    contents: read
    packages: write
    attestations: write # Required for attestation
    id-token: write # Added for OIDC token access

    steps:
    - name: Checkout code
    uses: actions/checkout@v5

    - name: Install JFrog CLI
    id: setup-jfrog-cli
    uses: jfrog/setup-jfrog-cli@v4.5.13
    env:
    JF_URL: ${{ env.JF_URL }}
    with:
    version: 2.78.8
    oidc-provider-name: ${{ env.OIDC_PROVIDER_NAME }}

    - name: Docker login
    uses: docker/login-action@v3
    with:
    registry: ${{ env.JF_REGISTRY }}
    username: ${{ steps.setup-jfrog-cli.outputs.oidc-user }}
    password: ${{ steps.setup-jfrog-cli.outputs.oidc-token }}

    - name: Set up Docker Buildx
    uses: docker/setup-buildx-action@v3

    - name: Build and push Docker image
    id: build-and-push
    uses: docker/build-push-action@v6
    with:
    context: .
    push: true
    tags: ${{ env.JF_REGISTRY }}/${{ env.IMAGE_NAME }}:${{ github.run_number }}
    build-args: ${{ env.BUILD_ARGS }}

    - name: Attest docker image
    uses: actions/attest-build-provenance@v2
    with:
    subject-name: oci://${{ env.JF_REGISTRY }}/${{ env.IMAGE_NAME }}
    subject-digest: ${{ steps.build-and-push.outputs.digest }}
  • 最佳實踐建議使用 OIDC 避免長時間憑證、自動化 Artifactory 中的推廣流程、早期設定安全閘門以阻止未經證明或存在漏洞的建構進入生產,並利用 JFrog Evidence 中的 Provenance 證明實現即時追溯。

TechSummary 2025-08-14

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

GPT-5 在 GitHub Copilot:我如何在 60 秒內建構一款遊戲 🚀

Source: https://github.blog/ai-and-ml/generative-ai/gpt-5-in-github-copilot-how-i-built-a-game-in-60-seconds/

  • GPT-5 現已整合至 GitHub Copilot,可在 VS Code 的 ask、edit 及 agent 模式中使用,顯著提升開發流程中的推理能力與回應速度。
  • 啟用方式簡單,僅需在 Copilot 介面中開啟模型選擇器並選取 GPT-5 即可。企業用戶需經管理員啟用。
  • 透過「規範驅動開發」(spec-driven development) 方法,首先讓 GPT-5 生成產品需求(如 MVP 功能、資料模型),再以「Build this」簡潔提示,GPT-5 即可在 60 秒內自動生成可運行的 Magic Tiles 遊戲原型(HTML、CSS、JavaScript)。
  • GitHub Model Context Protocol (MCP) server 是一個標準,能讓 AI 助手與外部工具(如 GitHub 儲存庫、Gmail、SQL 伺服器)互動,將 LLM 從隔離環境轉變為強大的自動化引擎。
  • 設定 GitHub MCP 伺服器僅需不到 5 分鐘,透過在工作空間根目錄建立 .vscode/mcp.json 配置檔並進行 GitHub OAuth 驗證即可。
  • 實際應用範例包含透過自然語言創建 GitHub 儲存庫及批量建立議題,大幅減少上下文切換,提高開發效率。
  • 這個工作流程的優勢在於 GPT-5 的處理速度、上下文保留能力,以及將自然語言作為開發介面,同時保持「人機協同」的控制。