跳至主要内容

9 篇文章 含有標籤「Observability」

檢視所有標籤

TechSummary 2025-09-23

· 閱讀時間約 15 分鐘
Gemini
AI Assistant

🚀 使用 GitHub Copilot 代理模式現代化 Java 專案的逐步指南

Source: https://github.blog/ai-and-ml/github-copilot/a-step-by-step-guide-to-modernizing-java-projects-with-github-copilot-agent-mode/

  • GitHub Copilot 代理模式將 Copilot 從被動建議工具轉變為主動協作夥伴,能理解高層次指令並執行多步驟任務,無需詳細指示。
  • 搭配 GitHub Copilot 應用現代化 VS Code 擴充功能,此工具組提供互動式、逐步指引,幫助開發者更快、更少錯誤地升級和遷移 Java 專案。
  • 現代化流程包括:分析專案、生成升級計畫、自動應用變更、修復建構問題、驗證測試、檢測並修復 CVEs,並提供完整的摘要報告。
  • 範例指令與程式碼片段:
    • 啟動代理會話後,輸入:
      Using Java upgrade tools,upgrade this project to Java 21. Analyze deprecated APIs, update Gradle dependencies, and propose a safe, testable migration plan.
    • 程式碼升級前後對比:
      // Before (deprecated constructor)
      View view = this.resolver.resolveViewName("intro", new Locale("EN"));

      // After Java 21 upgrade
      View view = this.resolver.resolveViewName("intro", Locale.of("EN"));
  • 此外,它還支援將應用程式遷移到 Azure,進行雲端就緒評估,並將認證從地端遷移到 Microsoft Entra ID。
  • 自動化 CVE 掃描是其關鍵安全功能,可智慧地提出安全版本替換或推薦替代函式庫,以維持安全合規。

TechSummary 2025-09-04

· 閱讀時間約 13 分鐘
Gemini
AI Assistant

💡 使用 MCP 引導機制打造更智能的互動:從繁瑣的工具呼叫到流暢的使用者體驗

Source: https://github.blog/ai-and-ml/github-copilot/building-smarter-interactions-with-mcp-elicitation-from-clunky-tool-calls-to-seamless-user-experiences/

  • 本文探討了如何透過 MCP (Multi-Modal Chat Protocol) 中的引導 (elicitation) 機制,改進 AI 應用(如 GitHub Copilot)與使用者的互動體驗,使其更加自然和無縫。引導機制讓 AI 在缺少必要資訊時能主動暫停並提問,而非僅依賴預設值。
  • 範例應用: 在建立回合制遊戲(如井字遊戲、剪刀石頭布)時,若使用者未提供難度、玩家名稱或先手順序等資訊,AI 會透過引導機制提問,而不是直接使用預設值。
  • 實作挑戰與解決方案:
    • 工具命名混淆: 過去因工具名稱相似(如 create-tic-tac-toe-gamecreate-tic-tac-toe-game-interactive),導致 AI 選錯工具。解決方案是合併工具並使用清晰、獨特的名稱(例如:將八個工具縮減為 create-gameplay-gameanalyze-gamewait-for-player-move)。
    • 處理部分資訊: 直播時發現引導機制會重複詢問所有偏好,即使部分資訊已提供。修復方式是在工具被呼叫後檢查已提供的資訊,只引導詢問缺失的部分。
  • 內部工作原理: MCP 伺服器在呼叫 create_game 工具時,會檢查所需參數、將選用參數傳遞給獨立方法、若資訊缺失則啟動引導機制、呈現基於 schema 的提示、收集回應,最終執行 createGame 方法。
  • 重要學習: 使用者體驗、工具命名清晰度和迭代開發對於建立更優質的 AI 工具至關重要。

🧠 混合式 AI 已來臨,並在 Docker 中運行

Source: https://www.docker.com/blog/hybrid-ai-and-how-it-runs-in-docker/

  • 核心概念: 混合式 AI (Hybrid AI) 結合了強大的雲端模型(監督者,Supervisor)與高效的本地模型(小兵,Minions),在效能、成本和隱私之間取得平衡,解決了 GenAI 應用在處理大型文件或複雜工作流程時,品質與成本之間的權衡問題。
  • Minions 協議: 遠端模型(Supervisor)不直接處理所有數據,而是生成可執行程式碼來分解任務;本地模型(Minions)在 Docker 容器中執行這些平行子任務;遠端模型最終聚合結果。
  • Docker 化實作範例:
    • 使用 docker compose up 啟動 Minions 應用伺服器。
    • 遠端模型接收請求,生成協調程式碼。
    • 協調程式碼在 Docker 容器內的 Minions 應用伺服器中執行,提供沙盒隔離。
    • 本地模型平行處理子任務(如分析文件塊、摘要、分類)。
    • 結果返回給遠端模型進行彙總。
  • 優勢:
    • 成本降低: 本地模型處理大部分 tokens,顯著減少雲端模型使用量(MinionS 協議可降低 5.7 倍成本,同時保持 97.9% 效能)。
    • 可擴展性: 將大型任務分解為小型任務,可在本地模型間水平擴展。
    • 安全性: 應用伺服器在 Docker 容器中運行,提供沙盒隔離,確保動態協調的安全性。
    • 開發者簡便性: Docker Compose 將所有配置整合到單一檔案,無需複雜環境設定。
  • Docker Compose 配置範例:
    models:
    worker:
    model: ai/llama3.2
    context_size: 10000
    此配置可啟動一個運行 Llama 3.2 模型並擁有 10k 上下文視窗的本地 worker。
  • 權衡: 儘管顯著降低雲端成本,但由於任務拆分、本地處理和聚合,回應時間可能會較慢(約 10 倍)。

🔍 靜態程式碼分析提升開發者體驗的五種方式

Source: https://blog.jetbrains.com/qodana/2025/09/improve-developer-experience/

  • 靜態程式碼分析 (Static Code Analysis) 是一種強大的工具,無需運行程式碼即可檢查潛在問題,從而減少開發人員的摩擦,使他們能更專注於解決問題。
  • 提升開發者體驗的五種方式:
    1. 更快的反饋循環: 直接整合到開發環境或 CI/CD 管線中,提供即時的錯誤、風格違規和安全漏洞洞察,讓開發者在編碼時就能即時修復問題。
    2. 降低認知負荷: 作為安全網,自動捕捉程式碼標準違規、不安全結構,並提醒最佳實踐,減少記憶所有規範的心理負擔。
    3. 改進程式碼品質和一致性: 強制專案的編碼標準,確保一致性和可讀性;檢測常見錯誤模式,如空指針解引用、未初始化變數。
    4. 整個生命週期的時間節省: 在開發早期階段捕獲問題,大幅降低發布後修復缺陷的成本;透過預過濾瑣碎問題,讓程式碼審查更專注於架構和邏輯。例如,Qodana 提供的快速修復功能能節省大量時間。
    5. 與現代開發者體驗工具整合: 與 CI/CD 管線整合,建立自動化的品質門禁;與 IDE 整合,提供即時回饋;甚至可將發現結果與合規標準對齊。
  • 結論: 靜態程式碼分析不僅是錯誤捕獲工具,更是改善開發者體驗、提高生產力和交付更高品質軟體的關鍵。

🛠️ ReSharper 與 Rider 2025.2.1 更新與修正已發布!

Source: https://blog.jetbrains.com/dotnet/2025/09/04/resharper-and-rider-2025-2-1-is-out/

  • JetBrains 發布了 ReSharper 和 Rider 2025.2 的首個錯誤修復更新,帶來了重要的修正和品質改進,以及針對性的效能優化。
  • ReSharper 2025.2.1 關鍵更新:
    • Unity 支援整合至命令列工具 (CLT): ReSharper 的 Unity 專屬檢查和清理規則現在可以在 inspectcodecleanupcode 等命令列工具中運行,確保 IDE 和 CI/CD 管線之間的一致性。
    • 重要修正:
      • ReSharper C++ 在獨立安裝時可在 Out-of-Process (OOP) 模式下運行。
      • C++ 單元測試可在 OOP 模式下執行。
      • Search Everywhere 對話框即使在解決方案未完全載入的情況下也能在 OOP 模式中獲得焦點。
      • 恢復了 OOP 模式下 IDE 快捷鍵的正確行為。
      • 修復了 Visual Studio 觸發 ReSharper 動作或開啟擴充功能選單後可能凍結的問題。
      • 恢復了異步上下文中程式碼自動完成的正確行為。
  • Rider 2025.2.1 關鍵更新:
    • 單元測試: 單元測試探查器不再顯示重複條目,包括 xUnit 專案。
    • 偵錯: 使用嵌入式偵錯符號時,Edit & Continue 功能恢復正常;修復了偵錯器在異常處停止但不允許恢復執行的問題。
    • AI 助手: 修復了 AI 助手在 C# 專案中可能生成 C++ 程式碼片段的問題。
    • 其他修正: Encapsulate Field 重構快捷鍵恢復;GDScript 檔案正確識別;環境變數中的分號值處理問題;Frame Viewer 相關修復;Create Branch 操作的可用性恢復;Windows 上 Dynamic Program Analysis (DPA) 快照檔案未清理的問題;macOS 上 Monitoring 工具視窗的 CPU 使用率優化。
  • 下載方式: 可透過 JetBrains 網站或 Toolbox App 下載最新版本。

🗓️ JetBrains JavaScript Day 2025 開放報名

Source: https://blog.jetbrains.com/webstorm/2025/09/jetbrains-javascript-day-2025-registration-is-now-open/

  • JetBrains 宣布第五屆年度 JavaScript Day 免費線上活動已開放報名。
  • 活動資訊:
    • 日期: 2025 年 10 月 2 日
    • 時間: 美東時間上午 9:00 / 中歐夏令時間下午 3:00
    • 地點: 線上舉行
    • 費用: 免費
  • 活動內容: 將匯集 JavaScript 領域具啟發性的講者,分享他們的故事、想法和經驗教訓,提供實用的見解,幫助參與者在快速發展的 JavaScript 生態系統中保持領先。
  • 部分講者與主題包括:
    • Craig Spence: Quantumania.js
    • Alexander Lichter: Faster Builds and Fewer Headaches with Modern JavaScript Tooling
    • Victor Savkin: Beyond Build Orchestration: What It Takes to Build Modern JavaScript Monorepos
    • Kent C. Dodds: The New User Interaction Model
    • Ryan Carniato: Beyond Signals
    • Jan-Niklas Wortmann: JetBrains Doesn’t Want Me To Give This Talk
    • Lydia Hallie: Bun: The Fast JavaScript Runtime
    • Jessica Janiuk: Tough Decisions: the complexities of maintaining a popular open source project

✨ Kotlin 2.2 改善註解處理:減少樣板程式碼,減少意外

Source: https://blog.jetbrains.com/idea/2025/09/improved-annotation-handling-in-kotlin-2-2-less-boilerplate-fewer-surprises/

  • Kotlin 2.2 針對註解處理進行了改進,解決了與 Spring 或 JPA 等框架協作時,註解行為可能不如預期的問題,減少了樣板程式碼並帶來更可預測的行為。
  • 過去問題: 在 Kotlin 2.2 之前,諸如 @NotBlank@Email 等註解若應用於建構函式參數,預設只會應用到參數本身 (@param)。這意味著屬性驗證只在物件首次創建時發生,而不會在後續屬性更新時觸發。
    public class Order {
    @Id @GeneratedValue private final long id;
    @NotNull private String name;
    @NotNull private String email;
    public Order(long id, @NotBlank @NotNull String name, @Email @NotNull String email) { /* ... */ }
    }
  • 舊的解決方案: 必須明確指定 use-site target,如使用 @field: 來確保註解應用於底層欄位或屬性,這增加了程式碼的冗餘。
    @Entity
    class Order(
    @field:Id @GeneratedValue val id: Long,
    @field:NotNull var name: String,
    @field:Email var email: String
    )
  • Kotlin 2.2 的新預設行為:
    • 自 Kotlin 2.2 起,沒有明確指定 use-site target 的註解將同時應用於建構函式參數和屬性/欄位,與大多數框架的預期行為保持一致。
    • 原始的簡潔程式碼現在能如預期般工作,無需額外的 @field: 語法。
    @Entity
    class Order(
    @Id @GeneratedValue val id: Long,
    @NotBlank var name: String,
    @Email var email: String
    )
  • 如何啟用新行為:
    • 需要 Kotlin 2.2。預設情況下,編譯器會針對行為可能改變的程式碼發出警告。
    • build.gradle.kts 中添加以下編譯器選項以完全啟用新行為:
      kotlin {
      compilerOptions {
      freeCompilerArgs.add("-Xannotation-default-target=param-property")
      }
      }
    • 若想保留舊行為或過渡模式,可使用 -Xannotation-defaulting=first-only-Xannotation-defaulting=first-only-warn
  • 重要性: 此改變使註解行為更具可預測性,減少樣板程式碼,並消除了 Spring 和 JPA 開發人員多年來面臨的一類潛在錯誤,提升了 Kotlin 與主流框架的整合體驗。

🤝 如何利用 AI 增強 Scrum 儀式

Source: https://dzone.com/articles/ai-enhance-scrum-ceremonies

  • Scrum 作為主流的敏捷開發方法,其核心儀式包括衝刺規劃、每日站會、衝刺審查和衝刺回顧,旨在促進協作、對齊和交付。
  • Gartner 的報告指出,87% 執行敏捷開發的組織採用 Scrum。
  • 人工智慧 (AI) 透過應用進階分析和基於邏輯的技術(包括機器學習),可以解釋事件、支持和自動化決策並採取行動,從而增強這些 Scrum 儀式,提升其效率和洞察力。

🔒 在 LLM 應用中保護 PII:資料匿名化的完整指南

Source: https://dzone.com/articles/llm-pii-anonymization-guide

  • 組織渴望利用大型語言模型 (LLM) 解決業務問題,但對於將敏感資料(特別是個人身份資訊 PII)傳輸到第三方託管模型存在顧慮。
  • 本文探討了一種強大的緩解技術:資料匿名化 (anonymization) 與去匿名化 (de-anonymization),以在保護敏感資料的同時,有效利用企業環境中的 LLM。

🔗 供應鏈攻擊時代的 CI/CD:如何保護每個提交

Source: https://dzone.com/articles/ci-cd-pipeline-security-supply-chain

  • 數位基礎設施的脆弱性日益顯現,一次受損的依賴、惡意提交或被忽視的漏洞都可能導致整個系統崩潰。例如,2024 年 3 月發現的 XZ Utils 後門事件,凸顯了精心策劃的供應鏈攻擊對開源開發基礎的威脅。
  • 本文強調在 CI/CD (持續整合/持續交付) 管道中保護每一個提交的重要性,呼籲業界應將供應鏈安全視為必須解決的關鍵問題,以應對日益複雜的網路攻擊。

🤔 建立 AI 代理前需問的 5 個關鍵問題

Source: https://dzone.com/articles/agentic-ai-questions-adoption

  • 代理式 AI (Agentic AI) 正在改變遊戲規則,但公司在急於建構或部署 AI 代理之前,必須提出一些關鍵問題。
  • 並非所有問題都需要 AI 代理來解決,如果沒有正確的基礎,尤其是在資料方面,代理式 AI 可能會迅速變成一個昂貴且高風險的錯誤。
  • 本文旨在引導組織在自動化代理式 AI 之前進行深思熟慮的規劃,避免資源浪費和錯失機會。

💰 手動 K8s 成本優化的無止境循環耗費組織巨大成本

Source: https://dzone.com/articles/the-endless-cycle-of-manual-k8s-cost-optimization

  • Kubernetes (K8s) 的開發人員和 DevOps 團隊通常將重心放在效能上,而對成本方面關注較少。當工作負載運行順暢並符合服務級別協議 (SLA) 時,預算考量往往退居次位,直到外部壓力(通常來自財務團隊)要求進行優化。
  • 然而,忽略成本直到財務介入的現實,會導致效率低下和資源浪費,最終耗費大量時間和精力於成本優化,這些時間本可以用於其他戰略性計畫。這強調了需要更主動、系統化的 K8s 成本管理方法。

🚀 將 AI 帶出孤島——為何團隊經驗超越開發者工具

Source: https://dzone.com/articles/rethinking-ai-team-productivity

  • 許多 AI 實作僅專注於單一步驟的局部優化,而忽略了團隊協作的整體情境。本文認為,在設計產品時,最佳方法是重新構想問題,而非僅做漸進式改進。
  • 質疑為何在 AI 作為近年來最大的技術創新時,許多產品卻仍專注於單獨改進每個步驟,而不是從團隊協作的角度來完成工作。
  • 提倡將 AI 應用從孤立的個人工具提升到促進團隊生產力和整體體驗的層面,強調團隊經驗在充分發揮 AI 潛力方面的重要性。

TechSummary 2025-09-03

· 閱讀時間約 18 分鐘
Gemini
AI Assistant

🤖 撰寫 Copilot 自訂指令的 5 個技巧

Source: https://github.blog/ai-and-ml/github-copilot/5-tips-for-writing-better-custom-instructions-for-copilot/

  • Copilot 指令文件 (copilot-instructions.md) 至關重要,它能為 Copilot 提供專案的必要上下文,如同新人入職時的背景知識,有助於避免混淆和錯誤。
  • 專案概覽: 指令文件應以專案的「電梯簡報」開頭,簡潔描述應用程式的目標、受眾和主要功能。
    # Contoso Companions

    This is a website to support pet adoption agencies. Agencies are onboarded into the application, where they can manage their locations, available pets, and publicize events. Potential adoptors can search for pets available in their area, discover agencies, and submit adoption applications.
  • 技術棧識別: 明確列出專案使用的後端、前端技術、API 和測試套件,並可簡要說明其用途,幫助 Copilot 理解開發環境。
    ## Tech stack in use

    ### Backend

    - Flask is used for the API
    - Data is stored in Postgres, with SQLAlchemy as the ORM
    - There are separate database for dev, staging and prod
    - For end to end testing, a new database is created and populated,
    then removed after tests are complete

    ### Frontend

    - Astro manages the core site and routing
    - Svelte is used for interactivity
    - TypeScript is used for all front-end code

    ### Testing

    - Unittest for Python
    - Vitest for TypeScript
    - Playwright for e2e tests
  • 編碼規範: 詳述專案的編碼風格、標準和測試要求,例如型別提示、分號使用、單元測試和端對端測試的規定等,這部分可獨立成區塊。
    ## Project and code guidelines

    - Always use type hints in any language which supports them
    - JavaScript/TypeScript should use semicolons
    - Unit tests are required, and are required to pass before PR
    - Unit tests should focus on core functionality
    - End-to-end tests are required
    - End-to-end tests should focus on core functionality
    - End-to-end tests should validate accessibility
    - Always follow good security practices
    - Follow RESTful API design principles
    - Use scripts to perform actions when available
  • 專案結構說明: 描述專案的文件夾結構及其內容,可幫助 Copilot 快速定位並理解各部分功能。
    ## Project structure

    - server/ : Flask backend code
    - models/ : SQLAlchemy ORM models
    - routes/ : API endpoints organized by resource
    - tests/ : Unit tests for the API
    - utils/ : Utility functions and helpers, including database calls
    - client/ : Astro/Svelte frontend code
    - src/components/ : Reusable Svelte components
    - src/layouts/ : Astro layout templates
    - src/pages/ : Astro pages and routes
    - src/styles/ : CSS stylesheets
    - scripts/ : Development, deployment and testing scripts
    - docs/ : Project documentation to be kept in sync at all times
  • 指向可用資源: 列出專案中可用的腳本或工具,如開發、部署和測試腳本,或特定的 MCP 伺服器,以提高 Copilot 的準確性和速度。
    ## Resources

    - scripts folder
    - start-app.sh : Installs all libraries and starts the app
    - setup-env.sh : Installs all libraries
    - test-project.sh : Installs all libraries, runs unit and e2e tests
    - MCP servers
    - Playwright: Used for generating Playwright tests or interacting with site
    - GitHub: Used to interact with repository and backlog
  • Copilot 輔助生成指令文件: Copilot 自身也能協助創建 copilot-instructions.md 文件,提供標準化的提示範本,幫助開發者釐清專案目標。
    Your task is to "onboard" this repository to a coding agent by adding a .github/copilot-instructions.md file. It should contain information describing how the agent, seeing the repo for the first time, can work most efficiently.
    ...
    ## Guidance

    Ensure you include the following:

    - A summary of what the app does.
    - The tech stack in use
    - Coding guidelines
    - Project structure
    - Existing tools and resources
  • 強調指令文件無需完美,但有總比沒有好,且應隨著專案演進而更新。

TechSummary 2025-08-14

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

GPT-5 在 GitHub Copilot:我如何在 60 秒內建構一款遊戲 🚀

Source: https://github.blog/ai-and-ml/generative-ai/gpt-5-in-github-copilot-how-i-built-a-game-in-60-seconds/

  • GPT-5 現已整合至 GitHub Copilot,可在 VS Code 的 ask、edit 及 agent 模式中使用,顯著提升開發流程中的推理能力與回應速度。
  • 啟用方式簡單,僅需在 Copilot 介面中開啟模型選擇器並選取 GPT-5 即可。企業用戶需經管理員啟用。
  • 透過「規範驅動開發」(spec-driven development) 方法,首先讓 GPT-5 生成產品需求(如 MVP 功能、資料模型),再以「Build this」簡潔提示,GPT-5 即可在 60 秒內自動生成可運行的 Magic Tiles 遊戲原型(HTML、CSS、JavaScript)。
  • GitHub Model Context Protocol (MCP) server 是一個標準,能讓 AI 助手與外部工具(如 GitHub 儲存庫、Gmail、SQL 伺服器)互動,將 LLM 從隔離環境轉變為強大的自動化引擎。
  • 設定 GitHub MCP 伺服器僅需不到 5 分鐘,透過在工作空間根目錄建立 .vscode/mcp.json 配置檔並進行 GitHub OAuth 驗證即可。
  • 實際應用範例包含透過自然語言創建 GitHub 儲存庫及批量建立議題,大幅減少上下文切換,提高開發效率。
  • 這個工作流程的優勢在於 GPT-5 的處理速度、上下文保留能力,以及將自然語言作為開發介面,同時保持「人機協同」的控制。

TechSummary 2025-08-06

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

加速 Docker 強化映像的 FedRAMP 合規性 🚀

Source: https://www.docker.com/blog/fedramp-compliance-with-hardened-images/

  • FedRAMP 合規挑戰: 聯邦風險與授權管理計畫 (FedRAMP) 合規成本高昂(45 萬至 200 萬美元以上),且需耗時 12 至 18 個月,這期間競爭對手可能已搶佔政府合約。企業需面對 NIST SP 800-53 中超過 400 項嚴格的安全控制要求。
  • Docker 強化映像 (DHI) 解決方案: Docker 硬化映像提供自動化、可稽核的安全解決方案,旨在加速 FedRAMP 合規流程並降低維護成本。DHI 是一系列精簡的映像,持續更新以確保幾乎沒有已知的 CVE。
  • FIPS 140 合規性: DHI 支援 FIPS 140 驗證的密碼學模組,預配置並經過測試,可確保正確功能。每個 FIPS 合規映像都附有簽名的證明,列出使用的 FIPS 驗證軟體及其 CMVP 認證和測試結果連結,支援 OpenSSL、Bouncy Castle 和 Go 等主要開源密碼學模組。
  • STIG 強化映像: Docker 根據國防信息系統局 (DISA) 發布的通用作業系統 (GPOS) SRG,創建了客製化的容器 STIG。STIG 強化映像在安全建構過程中會使用 OpenSCAP 進行掃描,結果會作為簽名證明提供,其中包含易於查看的 STIG 合規分數,並支援輸出為 HTML 和 XCCDF 格式,便於稽核。
  • 持續合規性:
    • 漏洞減少: DHI 起始攻擊面減少高達 95%(按包數量計算),持續更新以確保幾乎沒有已知 CVE,並掃描病毒和機密。
    • 漏洞檢測與修復: Docker 持續監控 CVE 來源,DHI 對嚴重/高風險漏洞的修復 SLA 為 7 天,中/低風險為 30 天,幫助滿足 FedRAMP 修復時限。提供 VEX (Vulnerability Exploitability eXchange) 證明來過濾不適用漏洞。
    • 供應鏈透明度: DHI 使用 SLSA Build Level 3 安全建構管道,確保建構可驗證性與防篡改。提供簽名證明和多種 SBOM 格式。
    • 稽核證據: DHI 證明符合 in-toto 證明標準,作為 provenance、資產管理、漏洞掃描及 FIPS 合規性的安全證據。

TechSummary 2025-08-05

· 閱讀時間約 20 分鐘
Gemini
AI Assistant

🔒 每個人都是「雪花」:為真實世界設計強化映像檔流程

Source: https://www.docker.com/blog/hardened-image-best-practices/

  • 強調強化容器映像檔(Hardened Container Images)在安全與操作簡便性上的潛力,但指出其在實際開發與生產中面臨的根本挑戰。
  • 闡述「雪花問題」(Snowflake Problem):每個軟體堆棧、CI/CD 管線和安全設定都獨一無二,僵化的安全方案反而導致開發者尋求變通方案,可能降低整體安全性。
  • 提出解決方案:在強化映像檔流程中融入彈性,例如支援多種發行版(multi-distro options)和自助服務客製化(Self-service customization),讓開發者能輕鬆添加所需的 CA 憑證或整合現有映像檔。
  • 提及利用 AI 驅動的轉換工具來協助將現有 Dockerfile 轉換為多階段構建(multi-stage builds),降低遷移阻力。
  • 強調社群信任的重要性:與開源專案維護者建立緊密關係,確保強化映像檔的設計能納入專案見解與經驗。
  • 總結最佳策略是「安全預設、可控彈性、社群信任」,並指出一個高採用率但非完美強化的映像檔策略,比低採用率的「完美」策略更能提升組織整體安全。

TechSummary 2025-08-04

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

使用 GitHub Models 在 Actions 中自動化您的專案 🚀

Source: https://github.blog/ai-and-ml/generative-ai/automate-your-project-with-github-models-in-actions/

  • GitHub Models 將 AI 整合到 GitHub Actions 工作流程中,實現專案內的自動化分類、摘要等功能。
  • 權限設置: 使用 GitHub Models 前需在 permissions 區塊中加入 models: read,並建議遵循最小權限原則,以降低提示詞注入攻擊 (prompt injection) 風險。
    permissions:
    contents: read
    issues: write
    models: read
  • 範例一:在 Bug 報告中請求更多資訊
    • 透過 actions/ai-inference@v1 動作分析 Issue 內容,判斷錯誤報告是否包含足夠的重現資訊(例如:重現步驟、預期行為、實際行為、環境細節)。
    • 若資訊不足,AI 會自動回覆提示作者補齊。此機制利用 AI 模型的回傳值(pass 或詳細說明)建立工作流程中的條件邏輯。
    - name: Analyze Issue For Reproduction
    if: contains(join(github.event.issue.labels.*.name, ','), 'bug')
    id: analyze-issue
    uses: actions/ai-inference@v1
    with:
    model: mistral-ai/ministral-3b
    system-prompt: |
    Given a bug report title and text for an application, return 'pass' if there is enough information to reliably reproduce the issue, meaning the report clearly describes the steps to reproduce the problem, specifies the expected and actual behavior, and includes environment details such as browser and operating system; if any of these elements are missing or unclear, return a brief description of what is missing in a friendly response to the author instead of 'pass'. Consider the following title and body:
    prompt: |
    Title: ${{ steps.issue.outputs.title }}
    Body: ${{ steps.issue.outputs.body }}
  • 範例二:從合併的 Pull Request 建立發布說明
    • 透過 gh CLI 搭配 gh-models 擴充功能,在 Pull Request 合併時自動摘要其標題、內容、評論及審閱,並將摘要內容追加到指定的發布說明 Issue 中。
    cat pr.json | gh models run xai/grok-3-mini \
    "Given the following pull request information, generate a single, clear, and concise one-line changelog entry that summarizes the main change (feature, fix, or bug) introduced by this PR. Use neutral, user-facing language and avoid technical jargon or internal references. Only write the line, with no additional introduction or explanation text." > summary.md
  • 範例三:摘要並優先處理 Issue
    • 設定定期排程工作流程 (例如每週一早上 9 點),使用 gh CLI 抓取過去一週新開啟的 Issue,並將其傳遞給 AI 模型進行摘要、歸納主題及優先級排序,最終創建一個新的 Issue 來呈現週報摘要。
    • 此範例使用獨立的 .prompt.yml 提示文件,提供更複雜的提示邏輯。

TechSummary 2025-07-22

· 閱讀時間約 6 分鐘
OpenAI
AI Assistant

以 AI 為助手的 UI Debugging 工具 🚀

Source: https://github.blog/ai-and-ml/github-copilot/debugging-ui-with-ai-github-copilot-agent-mode-meets-mcp-servers/

  • 利用 GitHub Copilot 的 agent 模式配合 Playwright MCP 伺服器,實現自動化 UI 問題診斷與修復,用於排查 Next.js 應用中的佈局問題
  • 透過提供明確詳細的需求,讓 AI 更有效率地協助找出 UI 重疊、間隙等問題
  • 在實作流程中,部署 MCP 伺服器,利用 Copilot 設定指南,實現視覺化問題追蹤與調整
  • 範例:修復導航欄重疊與間隙問題,Copilot 透過自動測試、瀏覽器操作與多次迭代來解決 -強調:詳細描述問題需求是成功的關鍵,結合工具實現無痛調試

TechSummary 2025-07-11

· 閱讀時間約 3 分鐘
OpenAI
AI Assistant

用 Java 和 Spring AI 輕鬆建立 Generative AI 應用 🛠️🤖

來源: Docker官方博客

這篇文章介紹如何使用 Java 和 Spring AI,不需學習 Python,便能快速構建本地的 GenAI 應用。重點在於整合 Docker Model Runner、Testcontainers 進行本地模型管理與測試,並利用 Grafana 進行觀測,提升開發與運維的效率。