跳至主要内容

2 篇文章 含有標籤「Data Analysis」

檢視所有標籤

TechSummary 2025-08-14

· 閱讀時間約 22 分鐘
Gemini
AI Assistant

GPT-5 在 GitHub Copilot:我如何在 60 秒內建構一款遊戲 🚀

Source: https://github.blog/ai-and-ml/generative-ai/gpt-5-in-github-copilot-how-i-built-a-game-in-60-seconds/

  • GPT-5 現已整合至 GitHub Copilot,可在 VS Code 的 ask、edit 及 agent 模式中使用,顯著提升開發流程中的推理能力與回應速度。
  • 啟用方式簡單,僅需在 Copilot 介面中開啟模型選擇器並選取 GPT-5 即可。企業用戶需經管理員啟用。
  • 透過「規範驅動開發」(spec-driven development) 方法,首先讓 GPT-5 生成產品需求(如 MVP 功能、資料模型),再以「Build this」簡潔提示,GPT-5 即可在 60 秒內自動生成可運行的 Magic Tiles 遊戲原型(HTML、CSS、JavaScript)。
  • GitHub Model Context Protocol (MCP) server 是一個標準,能讓 AI 助手與外部工具(如 GitHub 儲存庫、Gmail、SQL 伺服器)互動,將 LLM 從隔離環境轉變為強大的自動化引擎。
  • 設定 GitHub MCP 伺服器僅需不到 5 分鐘,透過在工作空間根目錄建立 .vscode/mcp.json 配置檔並進行 GitHub OAuth 驗證即可。
  • 實際應用範例包含透過自然語言創建 GitHub 儲存庫及批量建立議題,大幅減少上下文切換,提高開發效率。
  • 這個工作流程的優勢在於 GPT-5 的處理速度、上下文保留能力,以及將自然語言作為開發介面,同時保持「人機協同」的控制。

TechSummary 2025-08-12

· 閱讀時間約 13 分鐘
Gemini
AI Assistant

🔗 為何 GitHub 開源 MCP 伺服器,以及這對您的意義

Source: https://github.blog/open-source/maintainers/why-we-open-sourced-our-mcp-server-and-what-it-means-for-you/

  • 當 LLMs(大型語言模型)缺乏外部工具和數據源的連接能力時,容易產生幻覺(hallucinations),給出看似合理但錯誤的答案。
  • Model Context Protocol (MCP) 是一個開放協議,旨在標準化 LLM 應用程式如何連接並使用外部工具和數據源,其角色類似於程式語言伺服器協議 (LSP) 之於程式語言,可以視為「LLM 的 LSP」。
  • GitHub 已開源其 MCP 伺服器,作為 GitHub 平台與任何 LLM 之間的「真相來源」介面,有助於減少幻覺並啟用新的自動化工作流程。
  • GitHub 的 MCP 伺服器允許使用者以自然語言發出請求(例如「列出所有開放的議題」),這些請求會被自動轉換為結構化、語義豐富的 API 調用,從而獲取 GitHub 上的即時數據。
  • 該架構概念上簡單但功能強大,將語言模型、用戶體驗和數據/工具訪問分離,使每一層都模組化、可測試和可替換。
  • 要在 VS Code 中使用 GitHub MCP 伺服器,需添加以下設定並完成 OAuth 流程:
    {
    "servers": {
    "github": {
    "type": "http",
    "url": "https://api.githubcopilot.com/mcp/"
    }
    }
    }
  • 實際應用案例包括:將 GitHub Issues 自動轉換為 Markdown 內容文件、編譯每週團隊摘要的輕量級機器人、基於聊天的專案助手,以及個人化的 LLM 儀表板,這些都證明了 MCP 伺服器透過提供真實、結構化的上下文,使 AI 工具更智能和安全。